If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-110x-24200=0
a = 5; b = -110; c = -24200;
Δ = b2-4ac
Δ = -1102-4·5·(-24200)
Δ = 496100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496100}=\sqrt{12100*41}=\sqrt{12100}*\sqrt{41}=110\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-110)-110\sqrt{41}}{2*5}=\frac{110-110\sqrt{41}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-110)+110\sqrt{41}}{2*5}=\frac{110+110\sqrt{41}}{10} $
| 125m+100m+45900=43875+200m | | 6x+6=8x-15 | | 3c-5=2+5 | | 4•b-3=13 | | 20=10x-6(2x-5) | | 8×x+8=9x | | 18x=12x+6 | | 2x-4+2-2x-3=3x-1 | | 3f=-14 | | 5^2y-26(5^y)+25=0 | | 18+m=72 | | 3w-2+4=6 | | 2+2x-5=5(x=3) | | -2+5y=-17 | | -10=10r+10 | | 2(9x+4)-5(6x)=-76 | | x+23+14+x-12=26+x | | 3c=c+5 | | 6u-2u+3u=14 | | -28x=8x+8 | | -2(m+4)+m=28 | | 1/9x+4=1/3x-2/9 | | 2x+(3x+5)=41 | | z-10z+9z+2z=8 | | .25x+.30(x+80)=32 | | 180=3x+3x+x+3 | | r/6-3=-3 | | -49-(-24)=x/4 | | 20+8x-5=9x+5-x | | 19x-5x-19x+19x-15x=-15 | | 7x=x+34 | | -3(w+4)=2w+18 |